Analysis of calving traits with a multitrait animal model with a correlated direct and maternal effect

Animal Evaluation Unit Mathijs van Pelt

Content

- Introduction
- Aim of study
- Material & Methods
- Results
- Discussion
- Conclusions

Introduction

- Old Survey System
 - Only second parity cows (200-250 records per bull)
- Since 2007 two new systems to report the birth of a calf:
 - Voice Response System (VRS)
 - Notification System (MS) part of VeeManager via CRV-website
- Much more records per bull from all cows including heifers
 - Quality of new data was checked and proven to be good enough to use in BVE

Aim

- Investigate the feasibility of analysing calving traits with a multitrait animal model
 - For heifers and cows
 - With a correlated direct and maternal effect
 - Instead of sire-MGS model currently used

Data selection

- Calvings from 2002 onwards
- Herdbook registered calves with at least 75%HF (for dam as well)
- Gestation length between 260-300 days
- Birth weight between 20-75 kg
- No multiple births
- Extra requirements for VRS and MS:
 - Deviation of calving ease scores per herd per year is at least 0.20 with a minimum of 10 calvings per herd per year
 - ▶ No dam-offspring: offspring cannot occur as dam

Statistical Model

```
Y = S + A + M + HY + calf + cow + E
Heifers:
            Y = S + P + M + HY + calf + cow + perm + E
Cows:
 Y
            = Observation during birth of a calf for calving
            ease (transformed), birth weight, gestation length
 S
            = Sex
                                           fixed
 ▶ A
            = Age at calving
                                           fixed
            = Month of calving
 ► M
                                           fixed
 P
            = Parity number
                                           fixed
            = Herd x year of calving
 ▶ HY
                                           fixed
            = Calf born
 calf
                                           random
```

= Dam of the calf born

= Residual

= Permanent environment

cow

perm

F

random

random

random

Data description

Data description (2)

		Heifers	Cows
Gestation length	days	278.8	280.8
Birth weight	kg	39.0	41.6

Heritabilities

		Heifers	Cows
Calving ease	Direct	0.068	0.052
	Maternal	0.048	0.034
Gestation length	Direct	0.391	0.405
	Maternal	0.062	0.048
Birth weight	Direct	0.095	0.115
	Maternal	0.035	0.036
			CRV

Genetic correlations Heifers

Heifers		C	CE		GL		BW	
		Dir	Mat	Dir	Mat	Dir	Mat	
CE	Dir							
	Mat	0.25						
GL	Dir	0.24	0.41					
	Mat	0.01	0.16	0.09				
BW	Dir	0.94	0.26	0.29	0.07			
	Mat	0.01	0.24	0.16	0.39	0.14		

Genetic correlations Cows

Cows		CE		GL		BW		
		Dir	Mat	Dir	Mat	Dir	Mat	
CE	Dir							
	Mat	-0.39						
GL	Dir	0.39	-0.12					
	Mat	0.16	0.43	0.18				
BW	Dir	0.96	-0.01	0.40	0.03			
	Mat	-0.04	0.73	0.06	0.39	-0.14		

Genetic correlations heifers-cows

	Cows		2+ GL 2+		BW 2+		
Heifers		Dir	Mat	Dir	Mat	Dir	Mat
CE 1	Dir	0.96	0.20	0.46	0.22	0.99	-0.04
	Mat	-0.33	0.82	0.01	0.18	-0.24	0.60
GL 1	Dir	0.31	0.01	1.00	0.05	0.47	0.12
	Mat	-0.11	0.69	0.21	0.80	-0.04	0.26
BW 1	Dir	0.94	0.22	0.43	0.22	0.99	0.12
	Mat	-0.22	0.16	0.06	0.35	-0.18	0.84

Discussion

- Direct effect more heritable than maternal effect
- Heritabilities for calving ease in line with countries participating in Interbull:

Direct effect: 0.009 - 0.101

▶ Maternal effect: 0.011 - 0.121

Genetic correlations between parities high:

▶ Direct effect > 0.95

► Maternal effect ~ 0.80

Conclusions

- Possible to estimate genetic parameters with an animal model
 - Multitrait
 - With correlated direct and maternal effect
- Ranking between heifers and cows for the direct effect nearly the same
- Change routine evaluation to animal model
 - Include more data
 - Multitrait with direct and maternal effect

Questions?

